
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 261 (2003) 93–107

Modelling and characterization of a piezoceramic inertial
actuator

G.A. Lesieutrea, R. Rusovicib,*, G.H. Koopmannc, J.J. Doschd

aDepartment of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, USA
bSTI Technologies Inc., PCB Group, 1800 Brighton-Henrietta Townline Rd., Rochester, NY 14623, USA

cDepartment of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
dPCB Piezotronics Inc., Depew, NY 14043, USA

Received 2 July 2001; accepted 29 April 2002

Abstract

An inertial actuator (also known as a proof mass actuator) applies forces to a structure by reacting them
against an ‘‘external’’ mass. This approach to actuation may provide some practical benefits in the active
control of vibration and structure-borne noise: system reliability may be improved by removing the
actuator from a structural load path; effective discrete point-force actuation permits ready attachment to
curved surfaces, and an inherent passive vibration absorber effect can reduce power requirements.
This paper describes a class of recently developed inertial actuators that is based on mechanical

amplification of displacements of an active piezoceramic element. Important actuator characteristics
include resonance frequencies, clamped force, and the drive voltage to output the force frequency response
function.
The paper addresses one particular approach to motion amplification, the ‘‘dual unimorph,’’ in detail. A

model of actuator dynamic behavior is developed using an assumed-modes method, treating the
piezoelectrically induced stresses as external forces. Predicted actuator characteristics agree well with
experimental data obtained for a prototype actuator. The validated actuator dynamic model provides a tool
for design improvement.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Active control technology has potential applications to many noise and vibration problems,
including aircraft cabin interior noise, spacecraft vibration suppression, and automobile,
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industrial machinery and home appliances [1–5]. Practical deployment of this technology requires,
among other things, the development of light, efficient, reliable, cost-effective actuators.
Moving coil electrodynamic devices are inherently capable of large displacements and have

been widely used as the basis for inertial actuators [6–8]. Initial research by the authors
had indicated the potential for piezoceramic inertial actuators to provide higher power density,
better linearity and decreased power consumption, especially for moderately high frequency
(100–10,000Hz) applications [9].
The purpose of the research described herein was to explore the potential performance of

piezoceramic inertial actuators in more detail. Both analytical and experimental aspects were
addressed.

2. Piezoceramic inertial actuator concepts

Piezoelectric materials have found wide use in inertial sensor (e.g., accelerometer) applications
because of high electromechanical transduction properties. These properties also make such
materials excellent candidates for use in actuators. The need for rapid, high force linear response
effectively limits the materials choice to piezoceramics [10].
An inertial actuator can be thought of as applying forces to a structure that are reacted by

accelerating a supported mass. Even though piezoceramic materials are capable of providing high
forces, there has been little prior development of inertial actuators using them, largely because of
the small strains (displacements) developed and high inherent stiffness. Both of these factors limit
the practical performance achievable using direct piezoelectric acceleration of a given mass in the
frequency range of interest.
The development and use of mechanical amplification methods is essential to the practical

success of piezoceramic inertial actuation. Several approaches to mechanical amplification [11–15]
were explored in this research. Fig. 1 shows schematically three of the general concepts
considered. For purposes of discussion, these may be considered to be either planar or
axisymmetric.
In the ‘‘lever’’ concept, the expansion of a piezoelectric element is mechanically amplified

through a hinged linkage to produce larger motions of the attached mass.

 

 

 

 
Lever Dual-unimorph Flextensional

M MM

(a) (b) (c)

Fig. 1. Three concepts for mechanical amplification of piezoceramic displacement in an inertial actuator. (a) lever, (b)

dual-unimorph, (c) flextensional.
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In the ‘‘dual unimorph’’ concept, thin piezoceramic layers are attached to flat end caps.
In-plane actuation of the piezoceramic bends the 2-layer composite plate and produces transverse
motion of the attached mass. ‘‘Unimorph’’ actuation is a well-known means of obtaining
displacement amplification.
In the ‘‘flextensional’’ concept, in-plane actuation of a piezoceramic layer produces in-plane

motion of the edges of curved end caps. The curvature of the end caps produces transverse motion
of the attached mass. ‘‘Flextensional’’ actuation is also a well-known means of obtaining
displacement amplification.
It is not the purpose of this paper to compare the relative merits of these three motion

amplification concepts for application to inertial actuators. Instead, one of the concepts is chosen
and used as the focus for the development of a general modelling approach and its experimental
validation. Due to its relative simplicity, the ‘‘dual unimorph’’ concept was chosen for evaluation.
Note that any of these approaches will have the following general qualitative effects in

comparison to direct piezoelectric motion of a given mass: (1) larger displacement and higher
force output at low (quasistatic) frequencies; (2) lower natural frequencies of vibration; and (3)
lower clamped force (defined when the mass is prevented from moving). The quantitative effects
depend on the motion amplification factor, as well as the actuator structural stiffnesses (series and
parallel) relative to the piezoceramic stiffness [1,6].

3. Dual unimorph piezoceramic inertial actuator model

A model of the dynamic behavior of a dual unimorph piezoceramic inertial actuator is
developed using an assumed modes method. An approximate numerical approach such as this is
appropriate because of the geometric complexity of the actuator depicted in Fig. 2.
Key aspects of the analysis approach include the following: (1) the actuator is assumed to be

driven by voltage signal; (2) the piezoceramic material stiffness (at constant electrical field) is

M
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Fig. 2. Dual unimorph actuator geometry.
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included in the development of an elastic model of the actuator: and the piezoelectrically induced
stresses (at zero strain) are treated as external forces.
An important output from the model is a predicted frequency response function from the

actuator drive voltage signal to the output force for the situation in which the actuator is attached
to a rigid structure. Such a frequency response function can be readily determined in the
laboratory for comparison. Other important outputs available from the model include natural
vibration frequencies and clamped force; these may also be determined approximately from the
frequency response function.

3.1. Geometry, key features, and assumptions

In the model developed, the following geometrical, material, and physical parameters
completely characterize an actuator design: actuator radius, a; top cover thickness, hct; bottom
cover thickness, hcb; cover material (Ec; nc; rc); top piezo radius and thickness, apt and hpt; bottom
piezo radius and thickness, apb and hpb; piezo material (Ep; np; d31); cover-body joint stiffness, kY;
body mass, mB; and attached reaction mass, mR:
The top and bottom covers are assumed to have the same diameter (2a) and be made

of the same isotropic material. The two covers are connected via the body, which is assumed
to transmit vertical motion perfectly; i.e., the vertical displacement of the outer edges of
both covers is assumed to be the same. Although the body is assumed to be rigid, it is not
massless.
A ‘‘cover-body joint stiffness’’ (or simply ‘‘joint stiffness’’) is introduced to allow non-zero

cover radial rotation at the joint with the rigid body. If the joint stiffness is very small, the cover is
essentially simply supported; if the joint stiffness is very large, the cover is essentially clamped.
The stiffness of this welded or bonded joint is very difficult to estimate accurately a priori and
provides a single parameter that may be adjusted to improve the agreement of model predictions
with experimental data.
The top and bottom covers are allowed to have different thicknesses. In addition,

the top and bottom piezoceramic layers may have different diameters as well as different
thicknesses.
The top and bottom piezoceramic layers are made of the same material, assumed to

be poled and driven in the thickness (‘‘3’’) direction. Since common PZT materials are
isotropic in the 1–2 plane, an effective isotropic Young’s modulus and the poisson ratio
may be defined; these assume plane stress and constant electrical field conditions [17]. In
addition, since the important mode of piezoelectric actuation is in the 1–2 plane for
an electrical field in the 3 direction, only the piezoelectric coupling property d31 is of conse-
quence.
Furthermore, each cover–piezoceramic combination (top and bottom) is assumed to

behave as an axisymmetric perfectly bonded composite plate in accordance with Kirchoff plate
theory [18]. Normal radial and tangential strains (err; eyy) are assumed to vary linearly with
distance from the modulus-weighted midplane; midplane strains are taken to be zero. A slight
complication of allowing a piezoceramic layer to have a diameter different from the actuator
diameter is that the modulus-weighted midplane of the composite (multi-component) plate is
discontinuous.
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3.2. Assumed modes model

As noted in the preceding section, the geometric complexity of the actuator motivates the
development of an approximate numerical model. In prior work, an actuator concept based on
flextensional displacement amplification was modelled using finite elements [16]. While a detailed
FE model of a dual unimorph actuator could be readily constructed (some commercial FE codes
offer piezoelectric elements), such a model can be cumbersome for use in preliminary design and
sizing.
Because of the radial symmetry of the actuator concept considered, the possibility of developing

a low order model with the ability to accurately predict important first order actuator
performance characteristics seemed good and was pursued.
This low order model was based on the method of assumed modes with non-conservative

forcing [19]. This method is basically an energy approach in which the physical displacements of a
structure are represented as a sum of analyst-defined displacement shape functions scaled by time-
dependent coefficients (or generalized co-ordinates). The resulting mathematical model is a set of
ODEs in the generalized co-ordinates.

3.2.1. Assummed modes (shape functions)
In this model, the overall displacements of the actuator are represented conceptually as a

combination of displacements of the bottom cover and the top cover. The displacement
approximation chosen must satisfy all the geometric boundary conditions of the problem.
An initial model may be developed by assuming that the center of the bottom cover is fixed. The

force between the actuator and the structure may be found by permitting motion of this point,
then finding the force required preventing such motion. The transverse displacement of the
bottom plate midplane, wbðr; tÞ; may be approximated as

wbðr; tÞ ¼
Xn

i¼1

WbiðrÞciðtÞ; ð1Þ

where the WbðrÞ are the assumed modes and the ciðtÞ are the generalized co-ordinates for the
bottom plate. The assumed modes must satisfy the following geometric conditions:

Wbiðr ¼ 0Þ ¼ 0; zero displacement;

@Wbi

@r
ðr ¼ 0Þ ¼ 0; zero slope ðsymmetryÞ:

ð2Þ

In addition, it will be convenient to have

Wbiðr ¼ aÞ ¼ 1; ð3Þ

as this gives the ci a physical interpretation as the transverse displacements at the edge of the
bottom plate associated with assumed mode i:
Note that all that is needed to allow motion at the center of the bottom cover is to introduce an

additional coefficient c0ðtÞ with a unity shape function Wb0ðrÞ ¼ 1; c0 is just the displacement at
this point.
There are at least two ways to accommodate the effects of imperfect rotational continuity

between the body and covers (joint stiffness). The first is to choose the assumed modes so that
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they explicitly satisfy the mixed moment-slope boundary condition at the cover edge (r=a): a
restoring moment (per unit length) is proportional to the angular deflection (radial slope). The
second is to assume a simply supported (geometric) boundary, and to include the effects of the
joint stiffness in the expression for the system potential energy.
The first way has the advantage of using ‘‘higher quality’’ assumed modes, while the second has

the advantage of allowing more ready consideration of the effects of joint damping. Both ways
were implemented in this work and were found to give comparable results using a few degrees of
freedom.
The following polynomial form for the assumed modes satisfies the required boundary

conditions:

WbiðrÞ ¼ Ai
r

a

� �iþ2
þBi

r

a

� �iþ4
; ð4Þ

where

Ai ¼
ði þ 4Þ þ ði þ 4Þði þ 3Þ Dcb=aky

� �
2þ ð4i þ 10Þ Dcb=aky

� � ; Bi ¼ 1� Ai; ð5Þ

and Dcb is the bottom cover flexural rigidity:

Dcb ¼
Ech

3
cb

12ð1� u2cÞ
: ð6Þ

Now, the transverse displacement of the top plate midplane, wtðr; tÞ may be approximated as

wtðr; tÞ ¼
Xn

i¼1

ciðtÞ þ
Xn

j¼1

ð1� WtjðrÞÞdjðtÞ; ð7Þ

where the djðtÞ are the generalized co-ordinates for the top, and the same number of assumed
modes, n; are used to represent deformation of the top plate as the bottom. Note that the WtjðrÞ
functions that appear in this expression are similar to theWbiðrÞ that comprise the assumed modes
for the bottom plate; the difference being in the possibility that Dct is different from Dcb:
Note that this expression satisfies the following geometric conditions:

wtðr ¼ a; tÞ ¼ wbðr ¼ a; tÞ; edge displacement;

@wt

@r
ðr ¼ 0; tÞ ¼ 0; slope ðsymmetryÞ;

ð8Þ

and for convenience:

wtðr ¼ 0; tÞ ¼
Xn

i¼1

ciðtÞ þ
Xn

j¼1

djðtÞ: ð9Þ

In addition, if the coefficients Aj and Bj are selected as described in the preceding Eq. (5), the
assumed modes for the top plate will also explicitly satisfy the mixed moment–slope boundary
condition.
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3.2.2. Mass matrix development

The model mass matrix may be found by expressing the kinetic energy of the actuator in terms
of the time derivatives of the generalized co-ordinates of the model.
The total kinetic energy of the actuator is given as the sum of the kinetic energies of its parts: (1)

the top plate; (2) the bottom plate; (3) the body mass; and (4) the reaction mass.
The kinetic energy for the plate parts of the actuator has the form

T� ¼
1

2
2pð Þ

Z a

0

r�h� @w�

@r

� �2
r dr; ð10Þ

where r�h� is the total mass density per unit area. Note that if the piezoceramic radius is less than
the actuator radius, r�h� is not constant in this integral.
The expressions in the preceding Eqs. (8) and (9) for wbðr; tÞ and Wtðr; tÞ may be used to

determine the individual contributions of the top and bottom plates to the actuator mass matrix.
The body mass kinetic energy is given by

TB ¼
1

2
mB

@wb r ¼ a; tð Þ
@t

� �2
; ð11Þ

and the kinetic energy of the reaction mass by

TR ¼
1

2
mR

@wt r ¼ 0; tð Þ
@t

� �2
: ð12Þ

The total actuator kinetic energy may be expressed in matrix form in terms of the mass matrix
and the generalized velocities as

TR ¼
1

2

’c

’d

( )T

M½ �
’c

’d

( )
: ð13Þ

3.2.3. Stiffness matrix development
The model stiffness matrix may be found by expressing the strain energy of the actuator in

terms of the generalized co-ordinates of the model.
The total strain energy of the actuator is given as the sum of the strain energies of its parts: (1)

the top plate; (2) the bottom plate; and, if the simply supported assumed modes are being used, (3)
the body-cover joint.
The strain energy for the plate parts of the actuator has the form

U� ¼
1

2
ð2pÞ

Z a

0

D� @2w�

@r2
þ
1

r

@w�

@r

� �2
�2 1� n�

� �@2w�

@r2
1

r

@w�

@r

� �" #
r dr; ð14Þ

or

U� ¼ p
Z a

0

D�

@2w�

@r2

@w�

@r

8>><
>>:

9>>=
>>;

T

1
n�

r

n�

r

1

r2

2
664

3
775

@2w�

@r2

@w�

@r

8>><
>>:

9>>=
>>;r dr: ð15Þ
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Note that if the piezoceramic radius is less than the plate radius, the flexural rigidity D� is not
constant in this integral. In addition, as noted in the preceding section, the modulus-weighted
midplane will generally be discontinuous, which must also be accounted for. In regions of
a plate that have both a cover and piezoceramic parts, the effective composite flexural rigidity
depends on component material moduli, the Poisson ratios, thicknesses, and relative stiffness and
thickness.
If it is to be explicitly included (not implicitly in the shape functions used), the strain energy of

the body-cover joint stiffness is given by

U� ¼
1

2
ð2pÞky

@w�ðr ¼ a; tÞ
@r

� �2
: ð16Þ

Note that the individual contributions of the joint stiffnesses for both the top and bottom body-
cover joints must be included. The joint stiffness contains an imaginary term (damping), due to
the presence of a layer of high-damping material at the joint
The total actuator strain energy may be expressed in matrix form in terms of the model stiffness

matrix and the generalized co-ordinates as

U ¼
1

2

c

d

( )T

½K �
c

d

( )
: ð17Þ

3.2.4. Piezoelectric force vector development

The model force vector may be found by expressing the virtual work done by the
‘‘piezoelectric’’ stresses (clamped, at constant strain) in terms of the generalized co-ordinates of
the model. Note that the equivalent of the virtual work of the ‘‘elastic’’ stresses has been included
in the strain energy.
The virtual work of the piezoelectric stresses acting on plate is given approximately by

dW � ¼ 2php�

Z ap�

0

srrderr þ syydeyyð Þr dr; ð18Þ

where the stresses and virtual strains are defined at the geometric midplane of the (thin)
piezoceramic layer in terms of the assumed modes.
The piezoelectric clamped stresses are found from the piezoceramic material constitutive

equations as

syy ¼ srr ¼ �
Ep

ð1� upÞ
d31

V

hp�
: ð19Þ

Note that these clamped stresses are equal; as noted in the preceding Eq. (19), the material is
isotropic in the plane transverse to the poling direction. In addition, note that the quantity V=hp�

is the strength of the applied electrical field (decreasing electrical potential in the positive 3 (z)
direction is a positive electric field). Care must be taken to ensure that the correct sign of this field
is used for the top and bottom plate parts.
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The strain–displacement relations may be used to express the virtual strains in terms of the
transverse displacements (and the generalized co-ordinates) as

err ¼
@ur

@r
¼ �zp�

@2w�

@r2
; eyy ¼

1

r

@uy

@r
þ
1

r
ur ¼ �

zp�

r

@w�

@r
; ð20Þ

where zp� is the distance from the modulus-weighted composite midplane to the piezoceramic
geometric midplane.
The virtual work expression then becomes

dW � ¼ 2php�

Z ap�

0

Ep

ð1� upÞ
d31

V

hp�
d zp�

@2w�

@r2
þ

zp�

r

@w�

@r

� �
r dr ð21Þ

or

dW � ¼ 2p
EpV

ð1� upÞ
d31zp�

Z ap�

0

d
@2w�

@r2
þ
1

r

@w�

@r

� �
r dr ð22Þ

Note that the contributions of both the top and bottom piezoceramic elements must be included.
The total virtual work of the piezoelectric clamped stresses may then be expressed in matrix

form in terms of the generalized co-ordinates and the generalized force vector as

dW ¼
c

d

( )T
fc

fd

( )
VðtÞ: ð23Þ

3.2.5. Actuator dynamic equations

Using the preceding results for kinetic energy, strain energy, and virtual work, the matrix ODE
that govern the dynamic response of the actuator are found as:

½M�
.c

.d

( )
þ ½K�

c

d

( )
¼

fc

fd

( )
V ðtÞ: ð24Þ

As noted in the previous discussion of assumed modes options, one approach to including
damping would be to allow the body-cover stiffness to be complex. This approach yields a
complex stiffness matrix [K], and is most suitable for frequency-domain response analyses.
These equations, especially when augmented with a generalized co-ordinate corresponding to

the base displacement, provide a means for rapid numerical exploration of actuator performance.
The equation for the fixed base force has the general form

F ¼
mc

md

( )T
.c

.d

( )
: ð25Þ

Note that the actuator is incapable of applying a static force at its base because no mass is
accelerated.
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3.3. Predicted actuator performance

Of special interest is the predicted frequency response function from the actuator drive voltage
signal to the output force for the situation in which the actuator is attached to a rigid structure.
Other important outputs available from the model include natural vibration frequencies and
clamped force.

3.3.1. Natural modes of vibration
To determine the natural modes of vibration, an eigenvalue problem corresponding to the

unforced dynamics equations is solved. This problem has the form

K½ � � o2 M½ �
� � c

d

( )
n

¼
0

0

( )
; ð26Þ

where on is the natural frequency of vibration mode n; and fcdgnT is the corresponding
eigenvector. The approximate mode shape is then found as a sum of the assumed modes, each
weighted by the corresponding coefficient (generalized displacement).
Note that these equations correspond to the case in which the electrical field across the

piezoelectric layers is constant. This is usually accomplished by connecting the leads together, and
causes the material to behave with its short-circuit stiffness, Ep:

3.3.2. Clamped force
This performance measure is just the force at the actuator base when both the base and the

reaction mass are prevented from moving when a drive signal is applied. It is commonly described
in terms of output force per input voltage. The clamped force is a useful quantity because it
corresponds to the situation in which the actuator can react the structural force against an
unmoving reference point. For typical actuator designs considered, this situation is nearly
encountered at a forcing frequency in between the first and second natural frequencies of
vibration. In practice, an actuator can deliver higher forces, especially at frequencies near
resonance.

3.3.3. Frequency response
To determine the frequency response function (FRF) of an actuator design from the model, the

following problem is addressed. A harmonic drive voltage is applied to the actuator, and the
resulting, steady state response at the drive frequency is determined. The magnitude (force/volt)
and phase (degrees) of the ratio of the output force to the drive voltage is recorded for comparison
to experimental data.
First, the following equation is solved for the complex generalized co-ordinates at a specified

forcing frequency, o

½K � � o2½M�
� � c

d

( )
eiot ¼

fc

fd

( )
V0e

iot: ð27Þ
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Then, the fixed base force is found using:

F0 ¼ �o2
mc

md

( )T
c

d

( )
: ð28Þ

The value of the frequency response function at the forcing frequency is just the ratio of F0 to
V0: To generate a frequency response plot, this procedure is repeated at a number of forcing
frequencies over the range of interest.

4. Actuator experimental characterization

A prototype dual-unimorph actuator was fabricated at PCB Piezotronics for evaluation
purposes. This actuator was tested by simulating a fixed base condition in the laboratory, as
illustrated in Fig. 3.
The actuator was attached to a very large base mass through a stiff force transducer. It was

driven by a prescribed voltage signal and the output force signal measured using the force
transducer. The frequency response function over a range of interest was determined either by
sweeping slowly through the range, or by using FFT methods. Both approaches gave comparable
results.

5. Results

Fig. 4 shows predicted frequency response results (magnitude only) for a nominal actuator
design (the tested prototype). These results were obtained using 11 assumed modes in the
displacement approximations for each of the top and bottom plates. Three responses are shown,
corresponding to simply supported, clamped, and intermediate (between simply supported and
clamped) values of the joint stiffness (with no damping). Modal frequencies increase with
increasing stiffness, as expected. The behavior of the actual joint is expected to lie between these
extremes. The actuator is loaded with a 150-g inertial mass.

force transducer  
signal (conditioned)

drive  
signal

drive signal generator  
and amplifier

FREQ RESP

 

Fig. 3. Laboratory setup for actuator characterization.
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Notice the relatively flat range in the frequency response function between the first and second
axisymmetric natural frequencies. In this range, the force level is very nearly (actually slightly
greater than) the clamped force. This may be understood by considering the nature of the first two
modes. In the first mode, the body mass and the reaction mass move together; in the second mode,
the body mass and the reaction mass move in opposition. As the frequency increases through this
range, the reaction mass is nearly still, acting almost as a hard reference point against which to
push and pull. Input geometry parameters and input material properties used in calculations are
shown in Tables 1 and 2, respectively.
Fig. 5 shows several predicted actuator frequency response function magnitudes against

corresponding experimental data, for three different values of the reaction mass.
Damping was included in the predictions by allowing the body-cover joint stiffness to be

complex; the same (complex) joint stiffness was used in all predictions.
The predicted behavior agrees well with the experimental results in terms of natural frequencies,

damping, and the force level over the frequency range between the first and second natural

Fig. 4. Predicted FRFs for prototype actuator with extreme (and no damping) and intermediate joint stiffnesses (150 g

mass): K, simply supported; m, clamped, — prediction w/150 g mass; , experiment w/150 g mass.

Table 1

Model geometric input parameters for baseline actuator

a (mm) hct (mm) hcb (mm) apt (mm) hpt (mm) apb (mm) hpb (mm)

20 0.6 0.6 16.5 0.5 16.5 0.5

Table 2

Model material input parameters for baseline actuator

s11 (m
2/N) s12 (m

2/N) d31 (pC/N) ky (N) mR (g) Ec (Pa) nc

16.2e�12 �4.54e�12 �220 1300+j*450 25 1.14e+11 0.32
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Fig. 5. Comparison of predicted and experimental FRFs for prototype actuator, with changing reaction mass: (a) —,

100 g-predicted, , 100 g-experiment; (b) —, 150 g-predicted, , 150 g-experiment; (c) —, 200 g-predicted, , 200 g-

experiment.
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frequencies. Table 3 shows a comparison of the predicted and experimental natural frequencies
and blocked force level for a baseline actuator loaded with a 150-g mass.
Considering that the predictions were attained using just 10 degrees of freedom and a single

adjustable parameter (the joint stiffness), the agreement is quite satisfactory.

6. Summary

A light, efficient, reliable, cost-effective actuator might find near-term use in active noise and
vibration control applications. Initial analytical and experimental research has explored the
potential performance of a piezoceramic inertial actuator with mechanical amplification. Several
concepts for mechanical amplification were considered, including ‘‘lever,’’ ‘‘dual unimorph,’’ and
‘‘flextensional.’’
A low-order model of a ‘‘dual unimorph’’ actuator concept was developed using the method of

assumed modes. Composite plates comprised of a metal cover with an attached active
piezoceramic layer were assumed to behave in a manner consistent with the kinematic
assumptions of Kirchoff plate theory. The short-circuit stiffness of the piezoceramic material
was included in the development of the elastic part of the model, while the piezoelectric (clamped)
stresses were used in the development of the forcing terms. A key aspect of the model was the use
of assumed modes that explicitly satisfied a mixed moment-slope boundary condition due to a
presumed body-cover joint stiffness.
A prototype actuator was built and characterized experimentally. Measures of performance

included resonance frequencies, clamped force, and voltage-to-force frequency response.

Table 3

Comparison of predicted to experimental data [20]

Parameter f 1 (Hz) f 2 (Hz) Blocked force (N)

Predicted 267 1289 0.0675

Experimental 260 1250 0.067

% Error o3% 3% o1%

Fig. 6. 712 series dual-unimorph piezoceramic actuator manufactured by PCB Piezotronics Inc. Photo courtesy of PCB

Piezotronics Inc., published with permission [20].
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The low-order model accurately captured the key features of measured actuator performance.
The model was used to gain additional insight into the physical behavior of piezoceramic inertial
actuators and in developing guiding potential design modifications. The results of this research
were used to develop the commercially available 712 PCB Piezotronics Inc. series of dual-
unimorph piezoceramic actuators, shown in Fig. 6.
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